On Explaining Multimodal Hateful Meme Detection Models


Hateful meme detection is a new multimodal task that has gained significant traction in academic and industry research communities. Recently, researchers have applied pre-trained visual-linguistic models to perform the multimodal classification task, and some of these solutions have yielded promising results. However, what these visual-linguistic models learn for the hateful meme classification task remains unclear. For instance, it is unclear if these models are able to capture the derogatory or slurs references in multimodality (i.e., image and text) of the hateful memes. To fill this research gap, this paper propose three research questions to improve our understanding of these visual-linguistic models performing the hateful meme classification task. We found that the image modality contributes more to the hateful meme classification task, and the visual-linguistic models are able to perform visual-text slurs grounding to a certain extent. Our error analysis also shows that the visual-linguistic models have acquired biases, which resulted in false-positive predictions.

In Proceedings of the ACM Web Conference 2022
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Supplementary notes can be added here, including code, math, and images.